THE LOCAL THETA CORRESPONDENCE FOR UNRAMIFIED UNITARY GROUPS

ΒY

TAKAO WATANABE

Department of Mathematics Osaka University, Toyonaka, Osaka 560, Japan

ABSTRACT

We study the local theta correspondences for dual reductive pairs consisting of quasi-split unitary groups defined over a non-archimedean local field. We construct Howe's correspondence between the set of spherical representations of the one group and that of the other group by using the Whittaker model.

Introduction

Let $G_n^* = U(n, n+1)$ and $G_n = U(n, n)$ be quasi-split unitary groups defined over a global field k. In [6], we calculated some Fourier coefficients of an automorphic form $\varphi^* = {}^1\theta^n(\varphi|f)$ on $G_n^*(\mathbf{A})$ obtained from the global theta lifting of a cusp form φ on $G_n(\mathbf{A})$. In particular, we proved that a Whittaker function W_{φ^*} of φ^* is represented by a convolution of a Whittaker function W_{φ} of φ and a certain function $\Psi(f)$ defined from a Schwartz-Bruhat function f ([6, Corollary 5.5]). This formula is roughly written as

(0.1)
$$W_{\varphi^*}(h) = \int_{U_n(\mathbf{A})\backslash G_n(\mathbf{A})} W_{\varphi}(g) \Psi(\omega(h)f)(g) dg,$$

where ω is a Weil representation and U_n a maximal unipotent subgroup of G_n . Since the integral of the right-hand side is decomposed to an Euler product, we can consider the analogous formula for each local field k_v . The purpose of this paper is to calculate the unramified local factors of the integral of (0.1).

Received January 25, 1994

To be more precise, let F be a non-archimedean local field and assume that both G_n^* and G_n are defined over the ring \mathcal{O} of integers of F. Let η be an unramified quasi-character of a Borel subgroup of $G_n(F)$, and W_η a corresponding unramified Whittaker function. If a Schwartz-Bruhat function f_0 is invariant by the action of $G_n^*(\mathcal{O}) \times G_n(\mathcal{O})$, then the integral

$$(W_{\eta}, \Psi(\omega(h)f_0)) = \int_{U_n(F)\backslash G_n(F)} W_{\eta}(g)\Psi(\omega(h)f_0)(g)dg$$

gives an unramified Whittaker function on $G_n^*(F)$. Our result is a determination of the unramified quasi-character η^* of a Borel subgroup of $G_n^*(F)$ associated to this unramified Whittaker function (Proposition 2.2). If π_η and $\pi_{\eta^*}^*$ denote irreducible spherical representations of parameters η and η^* , respectively, then our result implies $\operatorname{Hom}_{G_n^*(F)\times G_n(F)}(\omega, \pi_{\eta^*}^* \otimes \pi_{\eta}) \neq 0$. In other words, the correspondence $\pi_\eta \mapsto \pi_{\eta^*}^*$ realizes the local Howe correspondence. It should be noted that Howe proved in [3] that spherical representations correspond to spherical representations in all unramified dual reductive pairs. However, he did not give any information about the matching of parameters.

A similar result is proved for the pair (G_n^*, G_{n+1}) in Section 3. The method used in this paper can also be applied to the dual reductive pair (GL_n, GL_{n+1}) . We will study this Type 2 case in a forthcoming paper.

The author would like to thank the referee for helpful comments.

Notation

For an associative ring R with identity element, we denote by R^{\times} the group of all invertible elements of R and by $M_n(R)$ the set of all $n \times n$ matrices with entries in R. For $A \in M_n(R)$, tA , TrA and det A stand for its transpose, trace and determinant. If Z is an R-module and x_1, x_2, \ldots, x_k are elements in Z, the submodule generated by x_1, x_2, \ldots, x_k is denoted by $\langle x_1, x_2, \ldots, x_k \rangle$.

Let F be a *p*-adic field and E the unramified quadratic extension of F. We assume $p \neq 2$ because we use the results of Howe [3, Theorems 7.1, 10.2]. The norm and the trace of E over F is denoted by $N_{E/F}$ and $tr_{E/F}$, respectively. Let \mathcal{O} (resp. \mathcal{O}_E) be the ring of integers of F (resp. E), ϖ a prime element of F and q the order of $\mathcal{O}/\varpi\mathcal{O}$. Then the order q_E of $\mathcal{O}_E/\varpi\mathcal{O}_E$ equals q^2 . The absolute valuation of F (resp. E) is denoted by $|\cdot|_F$ (resp. $|\cdot|_E$), which is normalized as $|\varpi|_E = |N_{E/F}(\varpi)|_F = q_E^{-1}$. For each $a \in E$, \overline{a} stands for the image of a by the Galois involution of E over F. We fix a non-trivial additive character μ of F with the conductor \mathcal{O} . Then $\mu_E = \mu \circ \operatorname{tr}_{E/F}$ is a non-trivial additive character of E with the conductor \mathcal{O}_E .

For a connected linear algebraic group G defined over F, we denote by G(F) the group of F-rational points. If G is further unramified, $G(\mathcal{O})$ stands for the group of \mathcal{O} -rational points. We normalize an invariant measure on G(F) as the volume of $G(\mathcal{O})$ equals 1.

1. Unramified Whittaker functions of quasi-split unitary groups

First, we define some notations, which are slightly different from [6]. Let Z_n^* be a 2n + 1 dimensional vector space over E with a basis $\{e_1^*, \dots, e_n^*, e_0^*, f_1^*, \dots, f_n^*\}$ and $(,)_n$ the Hermitian form on Z_n^* represented by the matrix

$$J_n^* = \begin{pmatrix} 0 & 0 & 1_n \\ 0 & 1 & 0 \\ 1_n & 0 & 0 \end{pmatrix}$$

Both subspaces $X_n^* = \langle e_1^*, \ldots, e_n^* \rangle$ and $Y_n^* = \langle f_1^*, \ldots, f_n^* \rangle$ are maximally isotropic. Let G_n^* denote the automorphism group of $(Z^*, (,)_n)$, that is

$$G_n^*(F) = \{g \in GL_{2n+1}(E) \colon {}^tgJ_n^*\overline{g} = J_n^*\}.$$

We define algebraic subgroups of G_n^* as

 $T_n^* =$ maximal torus consisting of diagonal matrices in G_n^* ,

 P_n^* = stabilizer of the full isotropic flag $\langle e_1^* \rangle \subset \langle e_1^*, e_2^* \rangle \subset \cdots \subset X_n^*$,

 $U_n^* =$ unipotent radical of P_n^* .

On the other hand, Z_n denotes a 2n dimensional vector space over E with a basis $\{e_1, \ldots, e_n, f_1, \ldots, f_n\}$ equipped with skew Hermitian form \langle, \rangle_n represented by the matrix

$$J_n = \begin{pmatrix} 0 & 1_n \\ -1_n & 0 \end{pmatrix} \, .$$

We put $X_n = \langle e_1, \ldots, e_n \rangle$, $Y_n = \langle f_1, \ldots, f_n \rangle$ and

$$G_n(F) = \{g \in GL_{2n}(E) \colon {}^tgJ_n\overline{g} = J_n\}.$$

Likewise as above, we define

 $T_n =$ maximal torus consisting of diagonal matrices in G_n ,

 P_n = stabilizer of the full isotropic flag $\langle e_1 \rangle \subset \langle e_1, e_2 \rangle \subset \cdots \subset X_n$,

 U_n = unipotent radical of P_n .

In the following, $G_n^{(*)}$ (resp. $T_n^{(*)}, P_n^{(*)}, \ldots$) stands for either one of the groups G_n^* or G_n (resp. T_n^* or T_n, P_n^* or P_n, \ldots). This convention is also used for other notations. Namely, if \mathbf{X}^* is an object with respect to G_n^* and \mathbf{X} a corresponding object for G_n , then $\mathbf{X}^{(*)}$ denotes either one of the objects \mathbf{X}^* or \mathbf{X} .

We recall the explicit formulas of unramified Whittaker functions. For each $\mathbf{k} = (k_1, \ldots, k_n) \in \mathbf{Z}^n$, we denote by $t_{\mathbf{k}}^{(*)}$ the diagonal matrix in $T_n^{(*)}(F)$ whose *i*-th diagonal entry is ϖ^{k_i} for $1 \leq i \leq n$. Further, for each $\mathbf{z} = (z_1, \ldots, z_n) \in (\mathbb{C}^{\times})^n$, we define the unramified character $\eta_{\mathbf{z}}^{(*)}$ of $T_n^{(*)}(F)$ by

$$\eta_{\mathbf{z}}^{(*)}(t_{\mathbf{k}}^{(*)}) = z_1^{k_1} \cdots z_n^{k_n}$$
.

This correspondence identifies $(\mathbb{C}^{\times})^n$ with the set of unramified characters of $T_n^{(*)}(F)$, and hence the action of the Weyl group of $G_n^{(*)}$ on $T_n^{(*)}$ induces the action on $(\mathbb{C}^{\times})^n$. We fix a closed Weyl chamber of the form

$$\Omega_n = \{ \mathbf{z} = (z_1, \ldots, z_n) \in (\mathbb{C}^{\times})^n \colon |z_1| \le |z_2| \le \cdots \le |z_n| \le 1 \}.$$

Let $I_{\mathbf{z}}^{(*)} = \operatorname{Ind}_{P_n^{(*)}(F)}^{G_n^{(*)}(F)} \eta_{\mathbf{z}}^{(*)}$ be the normalized induced representation, that is, the set of all locally constant functions $\varphi: G_n^{(*)}(F) \to \mathbb{C}$ such that $\varphi(tug) = \eta_{\mathbf{z}}^{(*)}(t)\delta_n^{(*)}(t)^{1/2}\varphi(g)$ for all $t \in T_n^{(*)}(F)$, $u \in U_n^{(*)}(F)$ and $g \in G_n^{(*)}(F)$. Here, modular characters δ_n^* and δ_n are given as

$$\delta_n^{(*)}(t_{\mathbf{k}}^{(*)}) = \begin{cases} \prod_{i=1}^n |\varpi|_E^{2(n-i+1)k_i} & \text{if } G_n^{(*)} = G_n^*, \\ \prod_{i=1}^n |\varpi|_E^{(2n-2i+1)k_i} & \text{if } G_n^{(*)} = G_n \end{cases}$$

Let $\varphi_{\mathbf{z}}^{(*)}$ be a non-zero $G_n^{(*)}(\mathcal{O})$ invariant function in $I_{\mathbf{z}}^{(*)}$ and $\psi^{(*)}$ be an unramified principal character of $U_n^{(*)}(F)$. We denote by $W_{\mathbf{z}}^{(*)}$ the image of $\varphi_{\mathbf{z}}^{(*)}$ by a unique (up to constant) non-zero $G_n^{(*)}(F)$ -morphism from $I_{\mathbf{z}}^{(*)}$ to $\operatorname{Ind}_{U_n^{(*)}(F)}^{G_n^{(*)}(F)}\psi^{(*)}$. This $W_{\mathbf{z}}^{(*)}$ is holomorphic in $z \in (\mathbb{C}^{\times})^n$ and determined by its restriction to $\{t_{\mathbf{k}}^{(*)}: \mathbf{k} \in \mathbb{Z}^n\}$. In order to describe $W_{\mathbf{z}}^{(*)}(t_{\mathbf{k}}^{(*)})$ explicitly, we use the following notation. For $z \in \mathbb{C}^{\times}$ and $k \in \mathbb{Z}$, we define K(z, k/2) by

$$K(z, k/2) = z^{k/2} - z^{-k/2}$$

Here the argument of $z^{1/2}$ is taken as $-\pi/2 < \arg z^{1/2} \le \pi/2$. Let

$$\Lambda_n = \{ \mathbf{k} \in \mathbb{Z}^n : k_1 \ge k_2 \ge \dots \ge k_n \ge 0 \} ,$$

$$\kappa^{(*)} = \begin{cases} 1 & \text{if } G_n^{(*)} = G_n^*, \\ 1/2 & \text{if } G_n^{(*)} = G_n . \end{cases}$$

400

Furthermore, for $\mathbf{z} \in (\mathbb{C}^{\times})^n$, let

$$\zeta^{*}(\mathbf{z}) = \prod_{i=1}^{n} (1 - q_{E}^{-1} z_{i})(1 + q^{-1} z_{i}) \prod_{1 \le i < j \le n} (1 - q_{E}^{-1} z_{i} z_{j}^{-1})(1 - q_{E}^{-1} z_{i} z_{j}) ,$$

$$\zeta(\mathbf{z}) = \prod_{i=1}^{n} (1 - q^{-1} z_{i}) \prod_{1 \le i < j \le n} (1 - q_{E}^{-1} z_{i} z_{j}^{-1})(1 - q_{E}^{-1} z_{i} z_{j}) ,$$

$$\epsilon^{(*)}(\mathbf{z}) = \prod_{1 \le i < j \le n} (z_{i} - z_{j})(1 - z_{i}^{-1} z_{j}^{-1}) \prod_{i=1}^{n} K(z_{i}, \kappa^{(*)}) .$$

In this paper we normalize $W_{\mathbf{z}}^{(*)}$ as in [1], i.e. as $W_{\mathbf{z}}^{(*)}(1) = \zeta^{(*)}(\mathbf{z})$. Then, for each $z \in (\mathbb{C}^{\times})^n$, a formula of Casselman and Shalika shows that if $\mathbf{k} \in \Lambda_n$, then (1.1) $W_{\mathbf{z}}^{(*)}(t_{\mathbf{k}}^{(*)}) = \frac{\zeta^{(*)}(\mathbf{z})}{\epsilon^{(*)}(\mathbf{z})} \delta_n^{(*)}(t_{\mathbf{k}}^{(*)})^{1/2} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n K(z_{\sigma(i)}, k_i + (n-i) + \kappa^{(*)})$,

otherwise $W_{\mathbf{z}}^{(*)}(t_{\mathbf{k}}^{(*)})$ equals 0. Here S_n denotes the *n*-th symmetric group.

Let $\pi_{\mathbf{z}}^{(*)}$ be the unique irreducible spherical constituent of $I_{\mathbf{z}}^{(*)}$. We call $\pi_{\mathbf{z}}^{(*)}$ generic if it admits a Whittaker model. By [4, Theorem 2.2], it is known that $\pi_{\mathbf{z}}^{(*)}$ is generic if and only if $\zeta^{(*)}(\mathbf{z})\zeta^{(*)}(\mathbf{z}^{-1}) \neq 0$. Let $\mathbf{W}_{\mathbf{z}}^{(*)}(\psi^{(*)})$ denote the $G_n^{(*)}(F)$ -module generated by $W_{\mathbf{z}}^{(*)}$. Obviously, if $\pi_{\mathbf{z}}^{(*)}$ is generic, it is isomorphic to $\mathbf{W}_{\mathbf{z}}^{(*)}(\psi^{(*)})$. In general, $\pi_{\mathbf{z}}^{(*)}$ is isomorphic to the unique irreducible quotient of $\mathbf{W}_{\mathbf{z}}^{(*)}(\psi^{(*)})$ if $\mathbf{z} \in \Omega_n$ (cf. [4, Section 2]).

Finally, we recall the Weil representations of the unitary group $G_m(F)$. Considering Z_m as a vector space over F equipped with symplectic form $\operatorname{tr}_{E/F}(\langle,\rangle_m)$, $G_m(F)$ is embedded in $Sp_{4m}(F)$. Let $Mp_{4m}(F) \to Sp_{4m}(F)$ be the metaplectic cover and ω_{μ} the Weil representation of $Mp_{4m}(F)$ associated with μ . If ν is a character of E^{\times} whose restriction to F^{\times} gives the non-trivial character of $F^{\times}/\operatorname{N}_{E/F}(E^{\times})$, then there exists a splitting $s_{\mu,\nu}$: $G_m(F) \to Mp_{4m}(F)$ ([2, Proposition 3.1.1]). The representation $\omega_{\mu} \circ s_{\mu,\nu}$ of $G_m(F)$ is denoted by $\omega_{\mu,\nu}^m$, which acts on the space $\mathcal{S}(Y_m)$ of Schwartz-Bruhat functions on Y_m as

$$\begin{split} \omega_{\mu,\nu}^m \left(\begin{pmatrix} A & 0\\ 0 & t\overline{A}^{-1} \end{pmatrix} \right) f(\vec{x}) &= \nu(\det A) |\det A|_E^{1/2} f(^t\overline{A}\vec{x}), \quad (A \in GL_m(E)), \\ \omega_{\mu,\nu}^m \left(\begin{pmatrix} 1_m & B\\ 0 & 1_m \end{pmatrix} \right) f(\vec{x}) &= \mu(^t\overline{\vec{x}}B\vec{x})f(\vec{x}), \quad (B = ^t\overline{B} \in M_m(E)). \end{split}$$

In this paper, we fix ν as the non-trivial unramified quadratic character of E^{\times} , that is, $\nu(\varpi) = -1$ and $\nu|_{\mathcal{O}_{F}^{\times}} = 1$.

2. The local theta correspondence from G_n to G_n^*

If we consider the space $Z_n^* \otimes Z_n$ equipped with skew Hermitian form $(,)_n \otimes \langle, \rangle_n$, then $U(1) \setminus G_n^*(F) \times G_n(F)$ is embedded in $G_{n(2n+1)}(F)$, where U(1) denotes the central torus $\{(t_{2n+1}, \overline{t}_{1_{2n}}): t \in \ker N_{E/F}\}$, and hence, the Weil representation $\omega_{\mu,\nu}^{n(2n+1)}$ is restricted to $G_n^*(F) \times G_n(F)$. Throughout this section, we write simply ω for $\omega_{\mu,\nu}^{n(2n+1)}$. We take a totally isotropic subspace $Y_{n(2n+1)}$ of $Z_n^* \otimes Z_n$ as

$$Y_{n(2n+1)} = Y_n^* \otimes Z_n + \langle e_0^* \rangle \otimes Y_n = \bigoplus_{i=1}^n f_i^* \otimes Z_n + e_0^* \otimes Y_n ,$$

which is naturally identified with $(Z_n)^n \oplus Y_n$. The action of $G_n^*(F) \times G_n(F)$ on $\mathcal{S}((Z_n)^n \oplus Y_n)$ is given as follows. For $(\vec{x}; y) = (x_1, \ldots, x_n; y) \in (Z_n)^n \oplus Y_n$ and a column vector $\alpha \in E^n$, we set

$$B_{\alpha} = \begin{pmatrix} -\alpha^{t}\overline{\alpha}/2 & -\alpha \\ -^{t}\overline{\alpha} & 0 \end{pmatrix} \in M_{n+1}(E) ,$$

$$Gr_{n}(\vec{x}) = \begin{pmatrix} \langle x_{1}, x_{1} \rangle_{n} & \cdots & \langle x_{1}, x_{n} \rangle_{n} \\ \vdots & \ddots & \vdots \\ \langle x_{n}, x_{1} \rangle_{n} & \cdots & \langle x_{n}, x_{n} \rangle_{n} \end{pmatrix} \in M_{n}(E) ,$$

$$Gr_{n+1}^{*}(\vec{x}; y) = \begin{pmatrix} (x_{1}, x_{1})_{n,0} & \cdots & (x_{1}, x_{n})_{n,0} & (x_{1}, y)_{n,0} \\ \vdots & \ddots & \vdots & \vdots \\ (x_{n}, x_{1})_{n,0} & \cdots & (y, x_{n})_{n,0} & (x_{n}, y)_{n,0} \end{pmatrix} \in M_{n+1}(E) ,$$

where $(,)_{n,0}$ is the Hermitian form on Z_n defined by

$$(x, x')_{n,0} = {}^t x \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix} \overline{x}'$$

for $x, x' \in Z_n$. Let **P** be the natural projection from Z_n onto Y_n . We also use the following notation for elements in $G_n^*(F)$.

$$m(A,\varepsilon) = \begin{pmatrix} A & & \\ & \varepsilon & \\ & & t\overline{A}^{-1} \end{pmatrix} \qquad (A \in GL_n(E), \ \varepsilon \in E^{\times}, \ \mathcal{N}_{E/F}(\varepsilon) = 1),$$
$$n(\alpha, B) = \begin{pmatrix} \mathbf{1}_n & \alpha & -\frac{1}{2}\alpha^t\overline{\alpha} \\ & \mathbf{1} & -^t\overline{\alpha} \\ & & \mathbf{1}_n \end{pmatrix} \begin{pmatrix} \mathbf{1}_n & 0 & B \\ & \mathbf{1} & 0 \\ & & \mathbf{1}_n \end{pmatrix} \qquad \begin{pmatrix} \alpha \in E^n \\ B = -^t\overline{B} \in M_n(E) \end{pmatrix}.$$

Vol. 92, 1995

Then we have the following formula: for $f \in \mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)$,

$$\omega(m(A,\varepsilon))f(\vec{x};y) = \nu(\varepsilon)^n \nu(\det A)^{2n} |\det A|_E^n f\left(\sum_{i=1}^n \overline{a}_{i1}x_i, \dots, \sum_{i=1}^n \overline{a}_{in}x_i; \overline{\varepsilon}y\right),$$

$$\omega(n(\alpha, B))f(\vec{x};y) = \mu(\operatorname{Tr}(B_\alpha \operatorname{Gr}_{n+1}^*(\vec{x};y)))\mu(\operatorname{Tr}(B \operatorname{Gr}_n(\vec{x})))f\left(\vec{x}; \sum_{i=1}^n \overline{\alpha}_i \mathbf{P}x_i + y\right),$$

where $A = (a_{ij})$ and $\alpha = (\alpha_i)$. If $f \in \mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)$ is of the form $f = f_1 \otimes f_0$, $f_1 \in \mathcal{S}((\mathbb{Z}_n)^n)$, $f_0 \in \mathcal{S}(\mathbb{Y}_n)$, then we also have the formula

$$\omega(g)f(\vec{x};y) = \nu(\det g)^n f_1(g^{-1}x_1,\ldots,g^{-1}x_n)\omega_{\mu,\nu}^n(g)f_0(y) \qquad (g \in G_n(F)).$$

Let $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathcal{O}_E^{\times})^n$ and $\beta = (\beta_1, \ldots, \beta_{n-1}, \beta_n) \in (\mathcal{O}_E^{\times})^{n-1} \times \mathcal{O}^{\times}$. We define unramified principal characters ψ_{α}^* and ψ_{β} of $U_n^*(F)$ and $U_n(F)$, respectively, by

$$\psi_{\alpha}^{*}(u^{*}) = \mu_{E}(\alpha_{1}u_{12}^{*} + \alpha_{2}u_{23}^{*} + \dots + \alpha_{n}u_{nn+1}^{*}),$$

$$\psi_{\beta}(u) = \mu_{E}(\beta_{1}u_{12} + \beta_{2}u_{23} + \dots + \beta_{n-1}u_{n-1n})\mu(-\beta_{n}u_{n2n})$$

for $u^* = (u_{ij}^*) \in U_n^*(F)$ and $u = (u_{ij}) \in U_n(F)$. For each $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathcal{O}_E^{\times})^n$, we put

$$\tilde{\alpha} = (\overline{\alpha}_1, \dots, \overline{\alpha}_{n-1}, \mathcal{N}_{E/F}(\alpha_n)) \in (\mathcal{O}_E^{\times})^{n-1} \times \mathcal{O}^{\times}.$$

In the following, we fix a pair $(\psi^*_{\alpha}, \psi_{\tilde{\alpha}})$ of unramified principal characters.

Let Δ_n^* be a subgroup of U_n^* of the form

$$\Delta_n^*(F) = \left\{ \begin{pmatrix} A & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & {}^t\overline{A}^{-1} \end{pmatrix} : A = \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix} \in GL_n(E) \right\} .$$

For each $f \in \mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)$, we define the function $\Psi(f)(g)$ in $g \in G_n(F)$ by

$$\Psi(f)(g) = \int_{\Delta_n^*(F)} \psi_\alpha^*(\delta)^{-1} \omega(\delta \dot{g}) f(e_1, \ldots, e_n; \alpha_n f_n) d\delta.$$

Let $W \in \operatorname{Ind}_{U_n(F)}^{G_n(F)} \psi_{\tilde{\alpha}}$. Then an unramified factor of the formula in [6, Corollary 5.5] is given by

$$(W, \Psi(\omega(h)f)) = \int_{U_n(F)\setminus G_n(F)} W(g)\Psi(\omega(h)f)(g)dg.$$

Since $\Psi(f)$ has a compact support in $G_n(F)$ modulo $U_n(F)$ (cf. Lemma (2.1)), the integral reduces to finite sum. Furthermore, as a function in $h \in G_n^*$, $(W, \Psi(\omega(h)f))$ is contained in $\operatorname{Ind}_{U_n^*(F)}^{G_n^*(F)}\psi_{\alpha}^*$. Therefore, we have a correspondence

$$\operatorname{Ind}_{U_n(F)}^{G_n(F)}\psi_{\tilde{\alpha}}\times \mathcal{S}((Z_n)^n\oplus Y_n)\to \operatorname{Ind}_{U_n^*(F)}^{G_n^*(F)}\psi_{\alpha}^*$$

Let f_0 be the characteristic function of the standard \mathcal{O}_E -lattice $(Z_n(\mathcal{O}_E))^n \oplus Y_n(\mathcal{O}_E)$. Since f_0 is $G_n^*(\mathcal{O}) \times G_n(\mathcal{O})$ -invariant, $(W_z, \Psi(\omega(h)f_0))$ is also $G_n^*(\mathcal{O})$ -invariant. The purpose of this section is to calculate $(W_z, \Psi(\omega(h)f_0))$ and determine the associated Satake parameter. We start with calculation of $\Psi(\omega(h)f_0)(g)$.

LEMMA 2.1: Let $\mathbf{k} = (k_1, \ldots, k_n)$ and $\mathbf{p} = (p_1, \ldots, p_n)$ be in \mathbb{Z}^n . If $p_1 \ge k_1 \ge p_2 \ge k_2 \ge \cdots \ge p_n \ge k_n \ge 0$, then

$$\Psi(\omega(t_{\mathbf{p}}^*)f_0)(t_{\mathbf{k}}) = \nu(\varpi)^{k_1 + \dots + k_n} \delta_n^*(t_{\mathbf{p}}^*)^{1/2} \delta_n(t_{\mathbf{k}})^{1/2} .$$

Otherwise, $\Psi(\omega(t_{\mathbf{p}}^*)f_0)(t_{\mathbf{k}})$ equals 0.

Proof: Let φ_0 be the characteristic function of \mathcal{O}_E . For $\mathbf{k} \in \mathbf{Z}^n$, put $d(\mathbf{k}) = k_1 + \cdots + k_n$. By definition,

$$\begin{split} \Psi(\omega(t_{\mathbf{p}}^{*})f_{0})(t_{\mathbf{k}}) &= \int_{\Delta_{n}^{*}(F)} \psi_{\alpha}^{*}(u)^{-1}\omega(ut_{\mathbf{p}}^{*}\cdot t_{\mathbf{k}})f_{0}(e_{1},\cdots,e_{n};\alpha_{n}f_{n})du \\ &= \nu(\varpi)^{2nd(\mathbf{p})+d(\mathbf{k})}|\varpi|_{E}^{nd(\mathbf{p})+d(\mathbf{k})/2} \int_{\Delta_{n}^{*}(F)} \psi_{\alpha}^{*}(u)^{-1}f_{0}(x_{1},\cdots,x_{n};\alpha_{n}\varpi^{k_{n}}f_{n})du \,, \end{split}$$

where

$$x_j = \sum_{i=1}^{j-1} \overline{u}_{ij} \varpi^{p_j - k_i} e_i + \varpi^{p_j - k_j} e_j .$$

This integral equals

$$\begin{split} \varphi_0(\alpha_n \varpi^{k_n}) \prod_{j=1}^n \varphi_0(\varpi^{p_j-k_j}) \prod_{j=2}^n \prod_{i=1}^{j-2} \int_E \varphi_0(\overline{u}_{ij} \varpi^{p_j-k_i}) du_{ij} \\ & \times \prod_{j=2}^n \int_E \mu_E(\alpha_{j-1} u_{j-1j})^{-1} \varphi_0(\overline{u}_{j-1j} \varpi^{p_j-k_{j-1}}) du_{j-1j} \\ &= \left(\prod_{j=2}^n \prod_{i=1}^{j-1} |\varpi|_E^{k_i-p_j} \right) \left(\prod_{j=1}^n \varphi_0(\varpi^{p_j-k_j}) \right) \left(\prod_{j=2}^n \varphi_0(\varpi^{k_{j-1}-p_j}) \right) \varphi_0(\varpi^{k_n}) \, . \end{split}$$

This implies the assertion.

Vol. 92, 1995

PROPOSITION 2.2: Let $W_{\mathbf{z}}$ be the unramified Whittaker function for $\mathbf{z} \in (\mathbb{C}^{\times})^n$. Then

$$\left(\prod_{i=1}^{n} (1+q_E^{-1}z_i)\right) (W_{\mathbf{z}}, \Psi(\omega(h)f_0)) = W_{-\mathbf{z}}^*(h) .$$

Proof: Let $\mathbf{p} \in \mathbf{A}_{\mathbf{n}}$. We remember that $\nu(\varpi) = -1$. By the formula (1.1) and Lemma 2.1, $(W_{\mathbf{z}}, \Psi(\omega(t_{\mathbf{p}}^*)f_0))$ equals

$$\frac{\zeta(\mathbf{z})}{\epsilon(\mathbf{z})} \delta_n^*(t_{\mathbf{p}}^*)^{1/2} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \left\{ \sum_{p_i \ge k_i \ge p_{i+1}} K(z_{\sigma(i)}, k_i + (n-i) + \kappa) \nu(\varpi)^{k_i} \right\} ,$$

where we put $p_{n+1} = 0$ for convenience. We use the following simple formula: For given integers $a \ge b \ge 0$,

$$\sum_{a \ge j \ge b} \nu(\varpi)^j K(z, j+m) = \frac{\nu(\varpi)^b K(z, b+m-1/2) + \nu(\varpi)^a K(z, a+m+1/2)}{z^{1/2} + z^{-1/2}} ,$$

and

$$\epsilon^*(-\mathbf{z}) = \epsilon(\mathbf{z})\nu(\varpi)^{n(n+1)/2} \prod_{i=1}^n (z_i^{1/2} + z_i^{-1/2}), \qquad \zeta^*(-\mathbf{z}) = \zeta(\mathbf{z}) \prod_{i=1}^n (1 + q_E^{-1} z_i)$$

Therefore, $\prod_{i=1}^{n} (1 + q_E^{-1} z_i) (W_{\mathbf{z}}, \Psi(\omega(t_{\mathbf{p}}^*) f_0))$ equals

$$\frac{\zeta^*(-\mathbf{z})}{\epsilon^*(-\mathbf{z})} \delta^*(t^*_{\mathbf{p}})^{1/2} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma)$$
$$\times \prod_{i=1}^n \left(K(-z_{\sigma(i)}, p_i + (n-i) + 1) - K(-z_{\sigma(i)}, p_{i+1} + (n-i)) \right) .$$

Since the sum over S_n equals the determinant of the matrix

$$\begin{pmatrix} K_{11} - K_{21} & K_{12} - K_{22} & \cdots & K_{1n} - K_{2n} \\ K_{21} - K_{31} & K_{22} - K_{32} & \cdots & K_{2n} - K_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ K_{n-11} - K_{n1} & K_{n-12} - K_{n2} & \cdots & K_{n-1n} - K_{nn} \\ K_{n1} & K_{n2} & \cdots & K_{nn} \end{pmatrix}$$

,

where $K_{ij} = K(-z_j, p_i + (n - i) + 1)$, it is also equal to

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n K(-z_{\sigma(i)}, p_i + (n-i) + 1) .$$

This implies the assertion.

Let $\mathcal{H}_n^{(*)}$ be the convolution algebra consisting of all locally constant and compactly supported functions on $G_n^{(*)}(F)$. The characteristic function $\xi_n^{(*)}$ of $G_n^{(*)}(\mathcal{O})$ is an idempotent element in $\mathcal{H}_n^{(*)}$ and $\omega(\xi_n^{(*)})$ defines a projection from $\mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)$ to the subspace $\mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)^{\omega(G_n^{(*)}(\mathcal{O}))}$ of $\omega(G_n^{(*)}(\mathcal{O}))$ invariant elements. By [3, Theorem 10.2] (or [5, Chapitre 5, Théorème I.4]), it is known that the subspace $\mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)^{\omega(G_n(\mathcal{O}))}$ coincides with the subspace $\omega(\mathcal{H}_n^*)f_0$. Therefore, for each $f \in \mathcal{S}((\mathbb{Z}_n)^n \oplus \mathbb{Y}_n)$, there exists $\varphi_f \in \mathcal{H}_n^*$ such that $\omega(\xi_n)f = \omega(\varphi_f)f_0$. Then we have

$$c(\mathbf{z})(W_{\mathbf{z}}, \Psi(f)) = c(\mathbf{z})(W_{\mathbf{z}}, \Psi(\omega(\xi_n)f)) = c(\mathbf{z})(W_{\mathbf{z}}, \Psi(\omega(\varphi_f)f_0)) = \varphi_f * W_{-\mathbf{z}}^* ,$$

where $c(\mathbf{z}) = \prod_{i=1}^{n} (1 + q_E^{-1} z_i)$. Hence we obtain a map

$$A_{\mathbf{z}}: \mathbf{W}_{\mathbf{z}}(\psi_{\tilde{\alpha}}) \times \mathcal{S}((Z_n)^n \oplus Y_n) \to \mathbf{W}^*_{-\mathbf{z}}(\psi_{\alpha}): (W, f) \mapsto c(\mathbf{z})(W, \Psi(\omega(\cdot)f))$$

If $\mathbf{z} \in \Omega_n$, then $A_{\mathbf{z}}$ is non-zero.

THEOREM 2.3: For any irreducible spherical representation π_z , one has

$$\operatorname{Hom}_{G_{\mathbf{z}}^{*}(F)\times G_{\mathbf{z}}(F)}(\omega,\pi_{-\mathbf{z}}^{*}\otimes\pi_{\mathbf{z}})\neq 0.$$

In other words, $\pi_{\mathbf{z}} \mapsto \pi_{-\mathbf{z}}^*$ is the local Howe correspondence with respect to $\omega = \omega_{\mu,\nu}^{n(2n+1)}$.

Proof: It is sufficient to consider π_z for $z \in \Omega_n$. As we noted in Section 1, π_z (resp. π_{-z}^*) is isomorphic to the unique irreducible quotient of $\mathbf{W}_z(\psi_{\tilde{\alpha}})$ (resp. $\mathbf{W}_{-z}^*(\psi_{\alpha})$). We denote by \mathbf{V}_z the kernel of the quotient map form $\mathbf{W}_z(\psi_{\tilde{\alpha}})$ to π_z . Let \widetilde{A}_z be the composition of A_z and the quotient map from $\mathbf{W}_{-z}^*(\psi_{\alpha})$ to π_{-z}^* . Since A_z is surjective, so is \widetilde{A}_z . We set

$$\mathbf{V'_z} = \{ W \in \mathbf{W_z}(\psi_{\tilde{\alpha}}) \colon \widetilde{A}_{\mathbf{z}}(W, f) = 0 \text{ for all } f \in \mathcal{S}((Z_n)^n \oplus Y_n) \} .$$

Since $\mathbf{V'_z}$ is a proper $G_n(F)$ -invariant subspace, we have $\mathbf{V'_z} \subset \mathbf{V_z}$. We suppose $\mathbf{V'_z} \neq \mathbf{V_z}$. Then there exists a non-zero irreducible subspace \mathbf{U} of $\mathbf{V_z}/\mathbf{V'_z}$, and the restriction of $\widetilde{A_z}$ to \mathbf{U} gives rise to a non-zero $G_n^*(F) \times G_n(F)$ -morphism from $\mathcal{S}((Z_n)^n \otimes Y_n)$ onto $\pi_{-\mathbf{z}}^* \otimes \mathbf{U}^{\vee}$, where \mathbf{U}^{\vee} denotes the smooth dual of \mathbf{U} . Thus $\pi_{-\mathbf{z}}^* \to \mathbf{U}^{\vee}$ is the local Howe correspondence. However, \mathbf{U}^{\vee} is not spherical

since the space $\mathbf{V}_{\mathbf{z}}/\mathbf{V}'_{\mathbf{z}}$ never has a $G_n(\mathcal{O})$ -invariant vector. This contradicts a result of Howe [3, Theorem 7.1 (b)]. Therefore, we have $\mathbf{V}_{\mathbf{z}} = \mathbf{V}'_{\mathbf{z}}$. Then $\widetilde{A}_{\mathbf{z}}$ induces a map from $\pi_{\mathbf{z}} \times S((Z_n)^n \oplus Y_n)$ onto $\pi^*_{-\mathbf{z}}$, and hence we have a non-zero $G_n^*(F) \times G_n(F)$ -morphism from $S((Z_n)^n \otimes Y_n)$ onto $\pi^*_{-\mathbf{z}} \otimes \pi^{\vee}_{\mathbf{z}}$, where $\pi^{\vee}_{\mathbf{z}}$ denotes the contragradient representation of $\pi_{\mathbf{z}}$. Then the equivalence $\pi^{\vee}_{\mathbf{z}} \cong \pi_{\mathbf{z}^{-1}} \cong \pi_{\mathbf{z}}$ implies the assertion.

We note that $\pi_{-\mathbf{z}}^*$ is not necessarily generic even if $\pi_{\mathbf{z}}$ is generic. Such a case occurs if and only if $\mathbf{z} \in \Omega_n$ satisfies $\zeta(\mathbf{z}^{-1}) \neq 0$ and $c(\mathbf{z}^{-1}) = 0$. For example, if n = 1 and $\mathbf{z} = -q_E^{-1} \in \Omega_1$, then $\pi_{\mathbf{z}} = I_{\mathbf{z}}$ is generic, but $\pi_{-\mathbf{z}}^*$ is the trivial representation.

3. The local theta correspondence from G_n^* to G_{n+1}

In this section, we consider the space $Z_n^* \otimes Z_{n+1}$ equipped with skew Hermitian form $(,)_n \otimes \langle, \rangle_{n+1}$. In a similar fashion as Section 2, the Weil representation $\omega_{\mu,\nu}^{(n+1)(2n+1)}$ is restricted to $G_n^*(F) \otimes G_{n+1}(F)$. We also write simply ω for $\omega_{\mu,\nu}^{(n+1)(2n+1)}$. Let $Y_{(n+1)(2n+1)}$ be a totally isotropic subspace of the form

$$Y_{(n+1)(2n+1)} = Z_n^* \otimes Y_{n+1} = \bigoplus_{i=1}^{n+1} Z_n^* \otimes f_i$$

which is identified with $(Z_n^*)^{n+1}$. The action of $G_n^*(F) \times G_{n+1}(F)$ on $\mathcal{S}((Z_n^*)^{n+1})$ is given as follows. For $f \in \mathcal{S}((Z_n^*)^{n+1})$ and $\vec{x} = (x_1, \ldots, x_{n+1}) \in (Z_n^*)^{n+1}$,

where $h \in G_n^*(F)$, $A = (a_{ij}) \in GL_{n+1}(E)$ and $B = {}^t\overline{B} \in M_{n+1}(E)$, and we put

$$\operatorname{Gr}_{n+1}^+(\vec{x}) = \begin{pmatrix} (x_1, x_1)_n & \cdots & (x_1, x_{n+1})_n \\ \vdots & \ddots & \vdots \\ (x_{n+1}, x_1)_n & \cdots & (x_{n+1}, x_{n+1})_n \end{pmatrix}.$$

For $\alpha = (\alpha_1, \ldots, \alpha_n) \in (\mathcal{O}_E^{\times})^n$, the unramified principal character $\psi_{\hat{\alpha}}$ of $U_{n+1}(F)$ is defined to be

$$\psi_{\hat{\alpha}}(u) = \mu_E(\overline{\alpha}_1 u_{12} + \dots + \overline{\alpha}_{n-1} u_{n-1n} - u_{nn+1}) \mu(\mathcal{N}_{E/F}(\alpha_n) u_{n+12(n+1)})$$

for $u = (u_{ij}) \in U_{n+1}(F)$. Throughout this section, we fix a pair $(\psi_{\alpha}^*, \psi_{\hat{\alpha}})$ of unramified principal characters.

Let Δ_{n+1} be a subgroup of U_{n+1} of the form

$$\Delta_{n+1}(F) = \left\{ \begin{pmatrix} A & 0\\ 0 & i\overline{A}^{-1} \end{pmatrix} : A = \begin{pmatrix} 1 & *\\ & \ddots & \\ 0 & & 1 \end{pmatrix} \in \operatorname{GL}_{n+1}(E) \right\} .$$

For each $f \in \mathcal{S}((Z_n^*)^{n+1})$, we define the function $\Psi^*(f)(h)$ in $h \in G_n^*(F)$ by

$$\Psi^*(f)(h) = \int_{\Delta_{n+1}(F)} \psi_{\hat{\alpha}}(\delta)^{-1} \omega(h \cdot \delta) f(e_1^*, \dots, e_n^*, \alpha_n e_0^*) d\delta$$

Let $W^* \in \operatorname{Ind}_{U_n^*(F)}^{G_n^*(F)} \psi_{\alpha}$. Then an unramified factor of the formula in [6, Corollary 4.5] is given by

$$(W^*, \Psi^*(\omega(g)f)) = \int_{U_n^*(F)\backslash G_n^*(F)} W^*(h)\Psi^*(\omega(g)f)(h)dh .$$

Since $(W^*, \Psi^*(\omega(\cdot)f))$ is contained in $\operatorname{Ind}_{U_{n+1}(F)}^{G_{n+1}(F)}\psi_{\hat{\alpha}}$, we obtain a correspondence

$$\operatorname{Ind}_{U_n^*(F)}^{G_n^*(F)}\psi_{\alpha}^* \times \mathcal{S}((Z_n^*)^{n+1}) \to \operatorname{Ind}_{U_{n+1}(F)}^{G_{n+1}(F)}\psi_{\hat{\alpha}} .$$

Let f_0^* be the characteristic function of the standard \mathcal{O}_E -lattice $(Z_n^*(\mathcal{O}_E))^{n+1}$. In like manner as Section 2, we have the following:

LEMMA 3.1: Let $\mathbf{k} = (k_1, ..., k_n) \in \mathbb{Z}^n$ and $\mathbf{p} = (p_1, ..., p_{n+1}) \in \mathbb{Z}^{n+1}$. If $p_1 \ge k_1 \ge p_2 \ge k_2 \ge \cdots \ge p_n \ge k_n \ge p_{n+1} \ge 0$, then

$$\Psi^*(\omega(t_{\mathbf{p}})f_0^*)(t_{\mathbf{k}}^*) = \nu(\varpi)^{p_1 + p_2 + \dots + p_{n+1}} \delta_{n+1}(t_{\mathbf{p}})^{1/2} \delta_n^*(t_{\mathbf{k}}^*)^{1/2}$$

Otherwise, $\Psi^*(\omega(t_{\mathbf{p}})f_0^*)(t_{\mathbf{k}}^*)$ equals 0.

408

Vol. 92, 1995

PROPOSITION 3.2: Let $W_{\mathbf{z}}^*$ be the unramified Whittaker function for $\mathbf{z} \in (\mathbf{C}^{\times})^n$. Let $-(\mathbf{z}, 1) = (-z_1, \ldots, -z_n, -1) \in (\mathbf{C}^{\times})^{n+1}$. Then

$$(-1)^{n}(1+q^{-1})\left(\prod_{i=1}^{n}(1-q_{E}^{-1}z_{i})\right)(W_{\mathbf{z}}^{*},\Psi^{*}(\omega(g)f_{0}^{*}))=W_{-(\mathbf{z},1)}(g)$$

Proof: Let $\mathbf{p} \in \Lambda_{n+1}$. It follows from Lemma 3.1 that $(W_{\mathbf{z}}^*, \Psi^*(\omega(t_{\mathbf{p}})f_0^*))$ equals

$$\frac{\zeta^*(\mathbf{z})}{\epsilon^*(\mathbf{z})} \delta_{n+1}(t_{\mathbf{p}})^{1/2} \nu(\varpi)^{d(\mathbf{p})} \\ \times \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \left\{ \sum_{p_i \ge k_i \ge p_{i+1}} K(z_{\sigma(i)}, k_i + (n-i) + 1) \right\}.$$

For $z \in \mathbb{C}^{\times}$ and $k \in \mathbb{Z}$, we put $K^{+}(z, k/2) = z^{k/2} + z^{-k/2}$. Then we have

$$\sum_{a \ge j \ge b} K(z, j+m) = \frac{K^+(z, b+m-1/2) - K^+(z, a+m+1/2)}{K(z, 1/2)}$$

for integers $a \ge b \ge 0$. Therefore, the sum over S_n equals

$$\prod_{i=1}^{n} \frac{1}{K(z_{i}, 1/2)} \sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) \\ \times \prod_{i=1}^{n} \left(K^{+}(z_{\sigma(i)}, p_{i+1} + (n-i) + 1/2) - K^{+}(z_{\sigma(i)}, p_{i} + (n-i) + 3/2) \right) .$$

By calculation of determinants, we obtain

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) \prod_{i=1}^n \left(K^+ \left(z_{\sigma(i)}, p_{i+1} + (n-i) + \frac{1}{2} \right) - K^+ \left(z_{\sigma(i)}, p_i + (n-i) + \frac{3}{2} \right) \right)$$

= $\frac{\nu(\varpi)^{n^2/2 + d(\mathbf{p})}}{K(-1, 1/2)} \sum_{\sigma \in S_{n+1}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n+1} K \left(z'_{\sigma(i)}, p_i + (n+1-i) + \frac{1}{2} \right) ,$

where $(z'_1, \ldots, z'_{n+1}) = -(\mathbf{z}, 1)$. As a consequence, $(W^*_{\mathbf{z}}, \Psi^*(\omega(t_{\mathbf{p}})f^*_0))$ equals

$$\frac{\zeta^*(\mathbf{z})}{\epsilon^*(\mathbf{z})} \delta_{n+1}(t_{\mathbf{p}})^{1/2} \frac{\nu(\varpi)^{n^2/2}}{K(-1,1/2)} \prod_{i=1}^n \frac{1}{K(z_i,1/2)} \\ \times \sum_{\sigma \in S_{n+1}} \operatorname{sgn}(\sigma) \prod_{i=1}^{n+1} K(z'_{\sigma(i)}, p_i + (n+1-i) + 1/2) .$$

Furthermore, we have

$$\epsilon(-(\mathbf{z},1)) = \epsilon^*(\mathbf{z})\nu(\varpi)^{n(n+2)/2}K(-1,1/2)\prod_{i=1}^n K(z_i,1/2),$$

$$\zeta(-(\mathbf{z},1)) = \zeta^*(\mathbf{z})(1+q^{-1})\prod_{i=1}^n (1-q_E^{-1}z_i).$$

This completes the proof.

The same argument as in Section 2 gives the following:

THEOREM 3.3: For any irreducible spherical representation π_z^* , one has

$$\operatorname{Hom}_{G_n^*(F)\times G_{n+1}(F)}(\omega,\pi_{\mathbf{z}}^*\otimes\pi_{-(\mathbf{z},1)})\neq 0.$$

In other words, $\pi_{\mathbf{z}}^* \mapsto \pi_{-(\mathbf{z},1)}$ is the local Howe correspondence with respect to $\omega = \omega_{\mu,\nu}^{(n+1)(2n+1)}$.

Since $\zeta^*(\mathbf{z})\zeta^*(\mathbf{z}^{-1}) \neq 0$ implies $\zeta(-(\mathbf{z},1))\zeta(-(\mathbf{z},1)^{-1}) \neq 0$, $\pi_{-(\mathbf{z},1)}$ is also generic if $\pi^*_{\mathbf{z}}$ is generic.

References

- W. Casselman and J. Shalika, The unramified principal series of p-adic groups II, Compositio Mathematica 41 (1980), 207-231.
- [2] S. Gelbart and J. Rogawski, L-functions and Fourier-Jacobi coefficients for the unitary groups U(3), Inventiones Mathematicae 105 (1991), 445-472.
- [3] R. Howe, θ-series and invariant theory, Proceedings of Symposia in Pure Mathematics 33(I) (1979), 275-285.
- [4] J.-S. Li, Some results on the unramified principal series of p-adic groups, Mathematische Annalen 292 (1992), 747-761.
- [5] C. Moeglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lecture Notes in Mathematics 1291, Springer-Verlag, Berlin, 1987.
- [6] T. Watanabe, Theta liftings for quasi-split unitary groups, Manuscripta Mathematica 82 (1994), 241-260.