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ABSTRACT 

We study the local theta correspondences for dual reductive pairs 

consisting of quasi-split unitary groups defined over a non-archimedean 

local field. We construct Howe's correspondence between the set of spher- 

ical representations of the one group and that of the other group by using 

the Whittaker model. 

Introduction 

Let G* = U(n, n+ 1) and G~ = U(n, n) be quasi-split unitary groups defined over 

a global field k. In [6], we calculated some Fourier coefficients of an automorphic 

form ~* = 10n(~olf ) on G*(A) obtained from the global theta lifting of a cusp 

form ~ on Gn(A). In particular, we proved that a Whittaker function W~. of ~* 

is represented by a convolution of a Whittaker function W~ of ~ and a certain 

function ~ ( f )  defined from a Schwartz-Bruhat function f ([6, Corollary 5.5]). 

This formula is roughly written as 

(0.1) W~. (h) = f W~(g)~(w(h)f)(g)dg, 
Ju  .(A)\C~(A) 

where w is a Weil representation and Un a maximal unipotent subgroup of G~. 

Since the integral of the right-hand side is decomposed to an Euler product, we 

can consider the analogous formula for each local field kv. The purpose of this 

paper is to calculate the unramified local factors of the integral of (0.1). 
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To be more precise, let F be a non-archimedean local field and assume that 

both G* and G~ are defined over the ring (9 of integers of F. Let ~ be an un- 

ramified quasi-character of a Borel subgroup of Gn(F), and W, a corresponding 

unramified Whittaker function. If a Schwartz-Bruhat function f0 is invariant by 

the action of G*((9) x G~((9), then the integral 

Iv W,(g)kO(~(h)fo)(g)dg (W,, gt(w(h)fo)) = .(F)\Cn(F) 

gives an unramified Whittaker function on G*(F). Our result is a determination 

of the unramified quasi-character ~* of a Borel subgroup of G~(F) associated 

to this unramified Whittaker function (Proposition 2.2). I f  r ,  and ~r~. denote 

irreducible spherical representations of parameters 7/and ~*, respectively, then 

our result implies HomG,(F)xGn(F)(W , 7r~. | r~) ~ O. In other words, the corre- 

spondence ru ~ ~r~. realizes the local Howe correspondence. It should be noted 

that Howe proved in [3] that spherical representations correspond to spherical 

representations in all unramified dual reductive pairs. However, he did not give 

any information about the matching of parameters. 

A similar result is proved for the pair (G*, G,~+I) in Section 3. The method 

used in this paper can also be applied to the dual reductive pair (GLn, GLn+I). 

We will study this Type 2 case in a forthcoming paper. 

The author would like to thank the referee for helpful comments. 

N o t a t i o n  

For an associative ring R with identity element, we denote by R • the group of 

all invertible elements of R and by Ms(R) the set of all n x n matrices with 

entries in R. For A 6 Ms(R), tA, TrA and de tA stand for its transpose, trace 

and determinant. If Z is an R-module and xl ,  x 2 , . . . ,  xk are elements in Z, the 

submodule generated by xl ,  x 2 , . . . ,  xk is denoted by (Xl, x 2 , . . . ,  xk/. 

Let F be a p-adic field and E the unramified quadratic extension of F. We 

assume p ~ 2 because we use the results of Howe [3, Theorems 7.1, 10.2]. The 

norm and the trace of E over F is denoted by NE/F and trE/F, respectively. Let 

O (resp. OE) be the ring of integers of F (resp. E),  w a prime element of F and 

q the order of O/wO. Then the order qE of (~E/~OE equals q2. The absolute 

valuation of F (resp. E) is denoted by I" IF (resp. I" IE), which is normalized 

as IWlE ~- INE/F(W)IF = qE 1. For each a E E,  ~ stands for the image of a by 
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the Galois involution of E over F. We fix a non-trivial additive character # of F 

with the conductor O. Then #E = I~ o trE/F is a non-trivial additive character 

of E with the conductor OE. 

For a connected linear algebraic group G defined over F, we denote by G(F) 

the group of F-rat ional  points. If G is further unramified, G(O) stands for the 

group of O-rational points. We normalize an invariant measure on G(F) as the 

volume of G(O) equals 1. 

1. U n r a m i f i e d  W h i t t a k e r  f u n c t i o n s  o f  quas i - sp l i t  u n i t a r y  g r o u p s  

First, we define some notations, which are slightly different from [6]. Let Z,~ be 

a 2n + 1 dimensional vector space over E with a basis {e~, . - . ,  e~,* e o,* f ~ , - . . ,  ]*} 

and (,)~ the Hermitian form on Z* represented by the matr ix  

(00 0 lo) 
J~= 1 

1,~ 0 

Both subspaces X~ = (e~ . . . .  , e*) and Y* = { f ~ , . . . ,  f*) are maximally isotropic. 

Let G~ denote the automorphism group of (Z*, (,),~), that  is 

G*(F) = {g �9 GL2n+I(E): tg j ,  y :_ j : } .  

We define algebraic subgroups of G* as 

7* = maximal torus consisting of diagonal matrices in G~, 

P* = stabilizer of the full isotropic flag (e~) C (e~, e~) C . . -  C X*, 

U* = unipotent radical of P*. 

On the other hand, Z~ denotes a 2n dimensional vector space over E with a basis 

{ e l , . . . ,  en, f l , - - . ,  f~} equipped with skew Hermitian form (,),~ represented by 

the matr ix  

Jn = - 1 ~  0 " 

We put X~ = ( e l , . . . , e ~ ) ,  Y~ = ( f l , . . . , f ~ )  and 

G,~(F) = {g E GL2~(E): t g j ~  = jn}. 

Likewise as above, we define 

T~ = maximal  torus consisting of diagonal matrices in Gn, 

P~ = stabilizer of the full isotropic flag (el) C (el, e2) C . . .  C X~, 

U, = unipotent radical of P~. 
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In the following, G (*) (resp. T (*), P(*), . . . )  stands for either one of the groups 

G* or G~ (resp. T* or Tn, P* or Pn, . . .) .  This convention is also used for other 

notations. Namely, if X* is an object with respect to G* and X a corresponding 

object for Gn, then X(*) denotes either one of the objects X* or X. 

We recall the explicit formulas of unramified Whittaker functions. For each 

k = ( k l , . . . ,  kn) �9 Z n, we denote by t (*) the diagonal matrix in T(*)(F) whose i- 

th diagonal entry is w k' for 1 < i < n. Further, for each z = (Zl , . . . ,  z~) �9 (C x )n, 

we define the unramified character rl (*) of T(*)(F) by 

kr~ 

This correspondence identifies (C • )n with the set of unramified characters of 

T(*)(F), and hence the action of the Weyl group of G (*) on T (*) induces the 

action on (C • )n. We fix a closed Weyl chamber of the form 

nn = {~. = (zx , . . . ,  z~) �9 (C X)~: Izxl ~ Iz2I ~ " "  ~ Iz~l ~ 1}. 

L e t  I (*) T _a~')(F) (,) be the normalized induced representation, that  is, = l n C l p ( . ) ( f ) ~ z  

the set of all locally constant functions ~: G(*)(F) ~ C such that ~(tug) = 
~(*)(t)~(*)(t)t/2~(g) for all t �9 T(*)(F), u �9 U(*)(F) and g �9 G(*)(F). Here, 

modular characters 6" and ~,, are given as 

~(*)~§ ~ i-ii~=l [~[~n-i+l)k, if G (*) = G*, 
n , , , . ,  (2n--21+l)ki if G~ *) = Gn �9 ~,~ ,~ , =  [, I - [ ,=1  ~ E 

Let ~(*) be a non-zero G(~*)(O) invariant function in I (*) and r be an unram- 

ified principal character of U(*)(F). We denote by W, (*) the image of ~(*) by a 

unique (up to constant)non-zero a~*)(F)-morphism from I~*) to Ind~:i(~!r 
u," (F~ 

This W (*) is holomorphic in z �9 (C x )n and determined by its restriction to 

{t(k*): k �9 Z~}. In order to describe w,,(*)(t(*)) explicitly, we use the following 

notation. For z �9 C • and k �9 Z, we define K(z,  k/2) by 

K ( z , k / 2 ) = z k / 2 - z - k / 2  . 

Here the argument of Z 1/2 is taken as - r r /2  < argz 1/2 _< 7r/2. Let 

h,~ = {k E Zn: kl _> k2 _> . . .  >_ kn _> 0} , 

a(,) = ~ 1 if G(~ *) = G*, 
[ 1/2 i f G  (*) = G , .  
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Furthermore, for z E (C • )~, let 
n 

~*(z) = H ( 1  - qElzi)(1 + q-lzi) H (1 -- qElziz;1)(1 -- qElz~zj), 
i----1 l~_i<j~_n 

r ---- H ( 1  -- q-lz,) H (1 -- qElziz;1)(1 -- qElzizj), 
i=1  l~_i<j(n 

e(')(z) = H ( z ' - z J ) (1 - z~ - l z ;1 )~ I  K(z''a(*))" 
l ~_i < j ~_n i=1  

In this paper we normalize W (*) as in [1], i.e. as W(*)(1) = ~(*)(z). Then, for 

each z E (C • )n, a formula of Casselman and Shalika shows that  if k E A,~, then 

(1.1) w(*)~§ = ~(*)(z)~(*)~§ 12 I "'z ~~ J ~ , ~  ~k J E sgn(a) g(zo(o,k~+(n-i)+~(*)), 
aES~ i=1 

otherwise ~zl(*)/§ equals O. Here S,~ denotes the n-th symmetric group. 

Let ~(*) be the unique irreducible spherical constituent of Iz (*). We call ~r (*) 

generic if it admits a Whittaker model. By [4, Theorem 2.2], it is known that  

~r (*) is generic if and only if ~(*)(z)~(*)(z -1) ~ 0. Let W(-*)(r (*)) denote the 

G(*)(F)-module generated by W, (*). Obviously, if ~r (*) is generic, it is isomorphic 

to W(*)(r In general, ~r (*) is isomorphic to the unique irreducible quotient 

of W(*)(r (*)) if z e ~/~ (el. [4, Section 2]). 

Finally, we recall the Weil representations of the unitary group GIn(F). Con- 

sidering Zm as a vector space over F equipped with symplectic form trE/F((,  >m), 

GIn(F) is embedded in Spare(F). Let Mp4m(F) --* Sp4m(F) be the metaplec- 

tic cover and w~ the Weil representation of Mpam(F) associated with #. If 

v is a character of E • whose restriction to F • gives the non-trivial charac- 

ter of F• then there exists a splitting s~,,~: G,~(F) --* Mpam(F) 
([2, Proposition 3.1.1]). The representation w~ o s~,,~ of Gm(F) is denoted by 

m w,,~, which acts on the space S(Ym) of Schwartz-Bruhat functions on Ym as 

%"~ 0 t-A -1 f(e) = v(detA)ldetAI1E/2f(t-AZ), (A �9 GLm(E)), 

m ( ( l ~  B ) )  
w,,~, 1,~ f(Z) = ]~(t2B.g)f(Z), (B = t--~ �9 im(S) ) .  

In this paper, we fix v as the non-trivial unramified quadratic character of E • , 

that  is, v(w) = - 1  and rio ~ = 1. 
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2. The local theta correspondence f rom Gn to  G* 

If we consider the space Z,~ | Z~ equipped with skew Hermitian form (,),~ @ (,),~, 

then U(1)\G~(F) x Gn(F) is embedded in On(2n+l~(F), where U(1) denotes the 

central torus {(t12,~+1,t12n): t E kerNE/F},  and hence, the Weil representation 

n(2~+1) is restricted to G~(F) x Gn(F). Throughout this section, we write 0-/D,u 

simply w for w~,,u~(2~+l). We take a totally isotropic subspace Y~(2~+1) of Z* | Z~ 

as 

Yn(2,~+l) = Y,~ | Zn + (e;} | Yn = ( ~  f/* | Zn + e; | y n ,  
i=l 

which is naturally identified with (Z~) ~ ~ Y~. The action of G*(F) x G,~(F) on 

S((Z,~) '~ @ Y,~) is given as follows. For (s y) = ( x l , . . . ,  x,~; y) E (Z,~) '~ ~ Y~ and 

a column vector a E E n, we set 

( -at-~/2 - a  ) 
B~ =- t ~  0 E M,~+I(E), 

(Xl,  Xl)n ''. (Xl, Xn)n ) 
Grn(s = " ".. " E M n ( E ) ,  

. . .  (xn,x )n 

((Xl'Xl)n'O "'" (Xl'Xn)n'O (Xl'y)n'O I .  �9 . �9 . 

(y,  Xl)n,0 "'" (y, Xn)n,O (Y, Y)n,O ] 

E Mn+I(E) ,  

where (,)n,0 is the Hermitian form on Zn defined by 

for x, x ~ E Z, .  Let P be the natural projection from Z ,  onto Y,. We also use 

the following notation for elements in G~(F). 

(A ) m(A,e)  = r t-A -1 (A e GLn(E),  

n ( a , B )  = 1 1 0 
In 1,~ 

e E E x, NE/F(r ) = 1), 

a E  E n ) 
B =  t - ~ E M , ( E )  " 
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Then we have the following formula: for f E $((Z~) ~ G Y~), 

n n 

w(m(A, e))f(~;  y) = u(e)nu(det A)2n[det A[~Ef ( E  ~ilxi, . .  ., E ~i~xi; gy), 
i----1 i----1 

n 

w(n(a, B))f (~ ;  y) * " = #(Tr(B~Gr~+l(X , y)))#(Tr(BGr~(Z)))f(i; E K i P x l  + y), 
i=1 

where A = (aij) and a = (ai). If f 6 S((Z~) ~ @ Y~) is of the form f = f l  | f0, 

fl  6 S((Z~)~), f0 6 S(Yn), then we also have the formula 

�9 . .  --1 x 01 n w(g)f(Z;y) = u(detg)~fl(g-lxl ,  ,g ~) ~,~(g)fo(Y) (g 6 G~(F)). 

Let a = ( a l , . . . , a , ~ )  6 (O~) n and ~3 = (~l,...,/3,~-l,~3n) 6 (O~) n-1 x O x. 

We define unramified principal characters r  and r of U*(F) and U,~(F), 

respectively, by 

r = #E(a~uh + a : %  + . . .  + a , ~ , ~ + , ) ,  

r  = P E ( ~ l ~ 1 2  + & ~ 2 3  + ' ' "  + / ~ n - - l U n - - l n ) # ( - - / ~ n U n 2 n )  

for u* = (u'j) 6 U*(F) and u = (uij) 6 U~(F). For each a = ( a l , . . . , a N )  6 

(O• E ] ' w e  put 

a = ( ~ I , . . . , ~ _ I , N E / F ( a n ) )  e (O~) "-I x O x. 

In the following, we fix a pair (r Ca) of unramified principal characters. 

Let A* be a subgroup of U~* of the form 

(1 ~ ,) } 
A*(F) = 1 0 : A =  ".. C GL~(E) . 

0 t-A -i i 

For each f E S((Z,~) ~ @ Yn), we define the function gl(f)(g) in g E G~(F) by 

a r  a~f~)d6. ~(f)(g) = ~,(F) en; 

. . G ~ ( F ) - -  Let W E mau,(f)~pa.  Then an unramified factor of the formula in [6, Corollary 

5.5] is given by 

u W(g)V(w(h)f)(g)dg. (W, ~(w(h)f)) = ,~(F)\G,,(F) 
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Since fit(f) has a compact support in G~(F) modulo U,~(F) (cf. Lemma (2.1)), 

the integral reduces to finite sum. Furthermore, as a function in h E G*, 
T . a : , ( F ) _ .  (W, fit(w(h)f)) is contained in mau .  (f)~P~" Therefore, we have a correspondence 

I AG"(F)'I '-  S ( ( Z n )  n G Yn) T . G : ( F ) _ ,  
. ,~U,~(F)Wa X ---} lnau.i(F)~pa . 

Let f0 be the characteristic function of the standard OE-lattice 

(Zn(OE)) '~ �9 Y,~(OE). Since fo is G*(O) • G,~(O)-invariant, (W,, fit(w(h)fo)) is 

also G*(O)-invariant. The purpose of this section is to calculate (W,, fit(w(h)fo)) 
and determine the associated Satake parameter. We start with calculation of 

~(w(h)fo)(g). 

LEMMA 2.1: Let k = (k l , . . . ,  kn) and p = (Px,...,P,~) be in Z '~. If p~ >_ kl > 
P2 )-- k2 )_ "'" )_ p,~ >_ ks >_ O, then 

fit(w(t;)fo)(tk) = u(w)k'+'"+k:6*(t;)ll2&~(tk) 112 �9 

Otherwise, fit(w(tb)fo)(tk ) equals O. 

Proof'. Let ~Oo be the eharaeteristie function of OE. For k E Z n, put d(k) = 

kl + . . .  + kn. By definition, 

= f r w(utp.tk)fo(el,. . . ,e,~;a,~fn)du fit(w(t;)fo)(tk) �9 - 1  �9 

J A  ~,(F) 

V(W)2.dCP)+d(k)lwl~dCp)+dCk)/2 f * -i = r fo(xl , '" ,xn;a~vak"f~)du,  
J A  *~(F) 

where 
j - 1  

xj = E~ijwPJ-k~ei  + wP~-kJej �9 
i=l 

This integral equals 

~o(~.w k= ) f i  ~o(w~-kJ ) ~o(~s ~ p~ -~' )du~s 
j = l  

• ~.I-I2 iE IzE(Otj-luj-l j )-ltpO(~j-l jvOpj-~'-I )duj-l 

This implies the assertion. | 
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PROPOSITION 2.2: Let  Wz be the unramified Whi t taker  function for z 6 (C x )'~. 

Then 

1 + qElzi (Wz, ~(w(h) fo) )  = W*_z(h). 

Proof: Let p 6 An. We remember that  u(w)  = -1 .  By the formula (1.1) and 

Lemma 2.1, (Wz, ~(w(t~,)f0)) equals 

r  ,.1/~ { } 
e-~On(tp)  ~ sgn(a) f i  Z K(z=(i) ' k i + ( n - i ) + t c ) v ( w ) k '  ' 

a6Sn i = 1  pi~k~_pi+l 

where we put P,~+I = 0 for convenience. We use the following simple formula: 

For given integers a > b > 0, 

v ( w ) J K ( z , j  + m)  = v ( w l b g ( z '  b + m - 1/2) + v ( w l a g ( z ,  a + m + 1/2) 
z l l  2 + z - l l  2 

a~_j>b 

and 

n n 

- 1  e*(-z) = e(z )u(w)  "~(n+1)12 H ( z ~  12 + zi-l/2) , r  -= ~(z) l-I(1 + qE zi) . 
i = l  i=1  

n 1 Therefore, 1-L=l( + qElzi)(  W.., ~(W(tp)fO)) equals 

* Z 
,_ ,> ,  F sgn( ) 

a6S~ 

• f i  (K(-z~( i ) ,p~  + (n - i) + 1) - K(-zo(~) ,p i+l  + (n - i))) . 
i=l  

Since the sum over S~ equals the determinant of the matrix 

Kl l  - K21 K n  - K22 " "  Kin  - K2~ \ 
K21 - K31 K22 - K32 "'" K2~ - K3~ 

J . . . . .  �9 

K , - I , -  Knl K ~ - 1 2 -  K~2 . . .  K ~ - I ~ -  K ~  
Knl  Kn2 �9 �9 �9 Knn 

where K~j = K ( - z j , p i  + (n - i) + 1), it is also equal to 

n 

sgn(a) 1-I K ( - z o ( i ) , p i  + (n - i) + 1). 
a6S. i=I 
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This implies the assertion. | 

Let 7-i (*) be the convolution algebra consisting of all locally constant and 

compactly supported functions on G(*)(F). The characteristic function ~(*) 

of G(*)(O) is an idempotent element in 7-I (*) and w(~ (*)) defines a projection 

from S((Zn) n @ Y~) to the subspace S((Z,~) ~ @ Yn) ~(a(~*)(~ of w(G(*)(O))- 

invariant elements. By [3, Theorem 10.2] (or [5, Chapitre 5, Th~or~me 1.4]), 

it is known that the subspace 8((Zn)n @ y,~)~(a,(O)) coincides with the subspace 

w(Tl*)fo. Therefore, for each f E S((Z~) n (~ Yn), there exists ~f  E 7-l* such that 

W(~n)f = W(cflf )fo. T h e n  w e  h a v e  

c(z)(W~., ~ ( f ) )  = c(z)(Wz, ~(w(~n)f) ) = c(7.)(Wz, ~'~T~(O.)(~f ) f o )  ) = : f  * W *  z , 

where c(z) n 1 - l z  : H i = l (  -~- qE i)- Hence we obtain a map 

Az: Wz( r  x S((Z,~) ~ ~ Yn) ~ W*_z(~,x): (W, f )  ~ c(z)(W, ~ (w( . ) f ) ) .  

If z E f~n, then  A .  is non-zero. 

T H E O R E M  2.3: For any irreducible spherical representation 7rz, one has 

Homa~(F)• | ~r.) # 0.  

In other words, ~r~ ~-* ~*_~ is the local Howe correspondence with respect to 
n(2n+l )  

r = 02tt,v 

Proof: It is sufficient to consider ~rz for z E g/n. As we noted in Section 1, ~z 

(resp. It*z) is isomorphic to the unique irreducible quotient of W~(r  (resp. 

W*z(r  We denote by Vz the kernel of the quotient map form Wz( r  to 

Ir~. Let -4z be the composition of A, and the quotient map from W * z ( r  ) to 

~r* z. Since Az is surjective, so is Az. We set 

v' , .  = { w  I )  = o for all S S((Zn) �9 Vn)}. 

Since V ' ,  is a proper G,~(F)-invariant subspace, we have V~z C Vz. We suppose 
V i V'z # Vz. Then there exists a non-zero irreducible subspace U of z /V , ,  and 

the restriction of Az to U gives rise to a non-zero G*(F) x Gn(F)-morphism 

from ,S((Zn) ~ | Y,~) onto r*~ | U v, where U v denotes the smooth dual of U. 

Thus r*~ -+ U v is the local Howe correspondence. However, U v is not spherical 
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since the space V ~ / V ~  never has a Gn(O)- invar ian t  vector.  This  contradic ts  a 

result of Howe [3, Theo rem 7.1 (b)]. Therefore,  we have V~ = V ' , .  Then  Ji~ 

induces a m a p  from 7rz x S((Z~)  ~ @ Yn) onto 1r 'z,  and hence we have a non-zero 

�9 v v denotes  G*(F)  x G,~(F) -morphism from S((Z,~) n |  onto zr_~ |  where 7r~ 
V ~ r % l  the contragradient  representa t ion  of zr~. Then  the equivalence r z = zr~-~ = Zrz 

implies the assertion. | 

We note  tha t  7r*~ is not necessarily generic even if lr~ is generic. Such a case 

occurs if and only if z E ~n  satisfies ~(z -1)  # 0 and c(z -1)  = 0. For example,  
--1 i f n  = 1 and z = - q E  C ~21, then  7r~ = I~ is generic, but  7r*_z is the t r ivial  

represent  at  ion. 

3. T h e  l oca l  t h e t a  c o r r e s p o n d e n c e  f r o m  G* t o  G~+I 

In this section, we consider the space Z* | Z~+I equipped with skew Hermi t i an  

form ( , )n | ( , )n+l .  In a similar  fashion as Section 2, the Well representa t ion  
~:d (n+ 1)(2n+ 1 ) , ,~ is restr ic ted to G*(F)  | G~+I(F). We also write s imply w for 

w (~+1)(2~+1)~,. . Let Y(n+l)(2~+l) be a to ta l ly  isotropic subspace of the form 

n+l 

Y(n+l)(2n+l) = Z* | r n + l  --- @ Z* @ f~ ,  
i----1 

which is identified with (Z~*) ~+1. The  act ion of G~(F) x C n + l ( f  ) on S((Z*) n+l) 
f z * ~ n + l  is given as follows. For f E S ( (Z* )  ~+1) and Z = ( X l , . . . ,  Xn+l) e ~ ~j , 

03 
( ln+l  

0 

w(h) f (Z)  = v ( d e t h ) ~ + l f ( h - l x l , . . . ,  h - l x n + l )  , 

~ t-~ -1 f ( x )  = u(det A)2'~+lIdet ~l~+l/2"~iE 

n + l  n + l  

i=1 i=1 

8 )) 
l n+ l  

where h E G*(F),  A = (aij) E GLn+I(E)  and B = t-~ e Mn+I(E),  and we put  

( (xl,xl)  ... ) 
Gr++l  (:g) = �9 . . .  �9 . 

( X n + l , X l )  n ' ' '  ( X n + I , X n + I )  n 
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/O• the unramified principal character Ca of For ~ = (~1 . . . . .  a~) C ~ E J ,  

U,~+I(F) is defined to be 

•&(U) ---- ~E(~lUl2 -b''"-[-"~n--lItn--1 n -- UnnT1)#(NE/F(O~n)Un+I 2(n+l)) 

for u = (uij) E Un+I(F). Throughout this section, we fix a pair (~b*,r of 

unramified principal characters. 

Let A,~+I be a subgroup of U,~+I of the form 

A n + l ( f ) =  { (  A t ~ - x ) :  A - ( 1 0  "'. : )  E G L n + I ( E ) }  �9 

S([Z*~n+I~ For each f E ~ ,~j j, we define the function k~*(f)(h) in h E G*(E) by 

a ~ba(5)-lw(h �9 5) f (e~ , . . . ,  e*, ane~)db . �9 *(f)(h) = .+x(F) 

. . C * ( F ) _  Let W* E lnau.(F ) Y)a. Then an unramified factor of the formula in [6, Corollary 

4.5] is given by 

(W*, V*(w(g)f)) =/U~(F)\G~(F) W*(h)~*(w(g)f)(h)dh . 

Since (W*, g/*(w(.)f)) is contained in T-~a"+*(F)'"- �9 nUu.+, (F) ~a, we obtain a correspondence 

i , C * ( F )  . . . .  G,,+I ( F ) ~  
naUl(F)~p, X S((Z~) '~+1) --+ mau.+~(F)~p, . 

Let f~ be the characteristic function of the standard OE-lattice (Z~(OE)) n+l. 

In like manner as Section 2, we have the following: 

LEMMA 3.1: Let k = ( k l , . . . , k , )  E Z n and p = (Pl, . .- ,Pn+~) E Z TM. / f  

Pl >_ kl >_ P2 ~_ k2 >- " " ~- Pn >- k~ >- Pn+l >_0, then 

�9 *(~(tp)/~)(t~)-= I ) (GY)Pl 'FP2-F '""FP'+I~n-} - I (~p) I /2~( tk )  1/2 �9 

Otherwise, ~*(W(tp)f~)(t~) equals O. 
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PROPOSITION 3.2: Let W* be the unramified Whittaker function for z E (C • )n. 

Let - (z ,  1 )=  ( - z l , . . . , - z n , - 1 )  E (CX) n+l. Then 

(_l)n(1 + q- l )  (1 - qT:iz~) (w2, ~,*(~(g)f~)) = w_(=,~)(g). 

Proot~ Let p E A,~+I. It follows from Lemma 3.1 that (W2, ~*(W(tp)f~)) equals 

~*(~.) 
e*(Z) ~n+l( tp) l /2v(~)d(P) 

aESn i=l pi~ki~Piq_l 

For z E C x and k E Z, we put K+(z, k/2) = z k/2 + z -k/2. Then we have 

E K(z , j  + m) = g + ( z ' b +  m -  1/2) - g+(z ,a  + m + 1/2) 
a>_j>b K(z, 1/2) 

for integers a > b > 0. Therefore, the sum over Sn equals 

i=, K(zi,1/2) E sgn(a) 
a6S,~ 

• ~ (g+(z~(~),;,+~ + (n - i) + 1/2) - g+(z~(,),p, + (n - i) + 3 / 2 ) ) .  
i--=l 

By calculation of determinants, we obtain 

f i (  1 K+ (n i ) ~ )  E sgn(a) K+(zo( i ) ,P i+l+(n- i )+-~)  - (zo(i),pi+ - + ) 
aES,~ i----1 

v(w),~/2+a(p) ,,+1 1 
= K(-1 ,1 /2)  E sgn(a) H K ( z ~ ( i ) ' P i + ( n + X - i ) + - ~ ) ,  

aESn+I i=1 

where (z~,.. ' * �9 , Z n + l )  ~- - - (~ , ,  1). As a consequence, (W~, ~*(W(tp)f~)) equals 

~(z) 5 ., ~l/: l"(w) ''2/2 f i  1 
~*(Z) n T l l , ~ p /  K(-1 ,  1/2) i=1 K(zl, 1/2) 

n + l  

• E sgn(a) H K(z~(i)'Pi + (n+ 1 - i) + 1/2). 
aES~+l i=1 
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Furthermore, we have 

n 

e(-(z ,  1)) = e*(z)u(w)n('~+2)/2K(-1, 1 / 2 ) H  K(zi ,  1/2) ,  
i = l  

n 

r  1)) = r + q- l )  H (  1 --qE-lZi)" 

This completes the proof. | 

The same argument as in Section 2 gives the following: 

THEOREM 3.3: For any irreducible spherical representation ~r*, one has 

HOmG~(F)xG.+I(F)(W, r~ | 7r_(z,1)) ~& 0 . 

In other words, 7r~ ~-*  7r_(z,1 ) is the local Howe correspondence with respect to 
(n+l)(2n+l) 

Since r -1) r 0 implies r  X))((-(z, 1) -1) ~ 0, 7r_(z,1 ) is also 
generic if 7r~ is generic. 
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